Getting to Diesel-Off

Technical requirements

Dr. Marc Mueller-Stoffels
Director, Power Systems Integration Program
Alaska Center for Energy and Power
Why Diesel-Off?

- Increase renewable power utilization
- Minimize carbon footprint
- Hedge against fuel price volatility
- Reduce diesel O&M
Services provided by diesels

• ‘Form the grid’
 – Provide Voltage and Frequency reference
• Inertia
 – Can ride through minor disturbances
• Provide spinning reserve capacity
 – Backstops drops in renewable power
 – Backstops increases in demand
• Fault current/clearing
 – Clear transient faults
 – Drive sufficient current to trip breakers
• Firm power source
Forming the grid

• Requires:
 – Synchronous generator (a.k.a. diesel generator)
 – Synchronous condenser
 – Voltage-source inverter

• Important because:
 – No grid, no power...
 – ... even if the sun is out, or the wind is blowing
Inertia

- Heavy spinning masses do not stop suddenly on disturbances (synchronous generator/condenser)
 - Can stabilize system and help ride through smaller issues

- Simulated inertia (inverters):
 - Adjust filtering circuits
 - Slow down reaction to disturbances (programming)
Spinning reserve capacity

• Requires:
 – Firm power source/sink
 • Energy storage system (boost power)
 • Demand management (reduce demand)
 • Best to combine

• Important, because:
 – Supply and demand have to match at any moment
 – Sudden drop in supply collapses the grid if not covered
Fault current/clearing

• Requires:
 – Capacity to overload equipment to either burn off transient faults, or trip circuit breakers

• If not available:
 – Hard to know fault location
 – Faults can hit back into sensitive equipment

• Alternatives:
 – Tripping breakers on under-voltage or under-frequency (requires smarter breakers and additional equipment)
Diesel alternatives (non-fossil)

- Hydropower
- Voltage-source inverters with energy storage
- Synchronous condensers
- Supporting equipment:
 - Secondary load controllers
 - Demand management
 - Advanced controls
 - Advanced system protection
Thank you!

Dr. Marc Mueller-Stoffels
Director, Power Systems Integration Program
Alaska Center for Energy and Power
Institute of Northern Engineering
University of Alaska Fairbanks
mmuellerstoffels@alaska.edu
(907) 687 0259
http://acep.uaf.edu

Partners:
US Department of Energy
US Department of the Interior
US Denali Commission
US Economic Development Administration
State of Alaska
Alaska Energy Authority
Alaska Power and Telephone
Cordova Electric Cooperative
City of Cordova
Nome Joint Utility Systems
Kokhanok Village Council
City of Galena
Power and Water Corporation, Darwin, Australia
Pohnpei Utilities Corporation, Micronesia
National Renewable Energy Laboratory
Sandia National Laboratory
Lawrence Berkeley National Laboratory
Oak Ridge National Laboratory
Colorado State University
Technical University Darmstadt, Germany
ABB
Shell
Huntley and Associates
Hatch Associates Consultants
Oceana Energy LLC
Oceana Energy LLC
Marsh Creek LLC